If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+24x-11=0
a = 6; b = 24; c = -11;
Δ = b2-4ac
Δ = 242-4·6·(-11)
Δ = 840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{840}=\sqrt{4*210}=\sqrt{4}*\sqrt{210}=2\sqrt{210}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-2\sqrt{210}}{2*6}=\frac{-24-2\sqrt{210}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+2\sqrt{210}}{2*6}=\frac{-24+2\sqrt{210}}{12} $
| 2(5x+2-)=6(2x+4) | | 3x-1(x-5)=-7 | | x+30=65 | | (5x-3)=(4+3x) | | 3y2+11y+6=0 | | 65x9.77=635.05 | | 1a+1a=100 | | -1(x-5)+4=-3(x+1) | | 5(y-4)=7(2y+-1) | | 27=46-2(-3-2w) | | -15x+14x+22=-11x+35 | | 5x+10=1x-2 | | 3x+5=41 | | 7(8x-2)+2)+2=7(8x-10)+9 | | 4y+5y-6y=500 | | 3(4c+4)=60 | | 18y+-102=30y+6 | | x-1/4=15 | | F(15)=3x+15 | | (2x-1)=-(1+1) | | (5y+3)/(-2)-(-3y+4)/3=(-3y+17)/(-6) | | 2v+5=-7+5v | | (5x6)x3=5x(6x3) | | 4x-4=16x+3 | | W^2=2w+80 | | 9x²+6x-4=0 | | 9x-14=7x-2 | | 9-7j=73 | | 60=x+7,07x | | 22-3w=5w+38. | | 7-(2p+3)= | | 5x+2/3=25 |